Morphismes de S^1 dans $GL_n(\mathbb{R})$

[FRANCINOU-GIANELLA-NICOLAS 2, p 251

ÉNONCÉ :

Théorème:

Les morphismes continus de S^1 dans $GL_n(\mathbb{R})$ sont les applications :

$$z \longmapsto Q \begin{pmatrix} R_{t,k_1} & 0 & \dots & 0 \\ 0 & R_{t,k_2} & \dots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & \dots & R_{t,k_n} \end{pmatrix} Q^{-1}$$

où
$$R_{t,k_i} = \begin{pmatrix} \cos(\theta_{k_i}) & -\sin(\theta_{k_i}) \\ \sin(\theta_{k_i}) & \cos(\theta_{k_i}) \end{pmatrix}$$
, $i = 1, ..., n$ et $Q \in GL_n(\mathbb{R})$.

DÉVELOPPEMENT:

LEMMES: Soit φ un morphisme continu de \mathcal{S}^1 dans $GL_n(\mathbb{R})$. Alors:

- 1. on a $\varphi(\mathcal{S}^1) \subset SL_n(\mathbb{R})$.
- 2. Pour tout $z \in \mathcal{S}^1$, les valeurs propres complexes de $\varphi(z)$ sont de module 1.
- 3. L'application $\Phi: (\mathbb{R}, +) \longrightarrow (GL_n(\mathbb{R}), \times)$ est dérivable et vérifie, pour tout $t \in \mathbb{R}$, $\Phi(t) = e^{tA}$, $A \in GL_n(\mathbb{R})$

Démonstration. 1. L'application $\psi = \det \circ \varphi : \mathcal{S}^1 \longrightarrow \mathbb{R}^*$ est conti-

- nue. Or la compacité et connexité de S^1 nous assure que $\psi(S^1)$ est un intervalle fermé borné de \mathbb{R}_+^* (car $\varphi(1_{S^1}) = I_n$ qui est de déterminant 1). Les seuls sous-groupes de (\mathbb{R}_+^*, \times) bornés contenant 1 étant le groupe trivial $\{1\}$, on en déduit le résultat.
- 2. On munit $\mathcal{M}_n(\mathbb{C})$ d'une norme subordonnée à une norme vectorielle quelconque de \mathbb{C}^n , notée |||.|||. Par le même argument $\varphi(\mathcal{S}^1)$ est borné. On dispose donc d'une constante M > 0 telle que $|||\varphi(z)||| \leq M$ pour tout élément z de \mathcal{S}^1 . Or toute valeur propre complexe λ de $\varphi(z)$ vérifie $|\lambda| \leq |||\varphi(z)|||$. Ainsi, l'ensemble des valeurs propres des éléments de $\varphi(\mathcal{S}^1)$ est borné. Or si λ est valeur propre de $\varphi(z)$, il en est de même pour λ^p , $p \in \mathbb{Z}$. La suite $(\lambda^p)_{p \in \mathbb{Z}}$ est donc bornée. En particulier, on a $|\lambda| = 1$.
- 3. Voyons que Φ est dérivable. Posons $F: x \in \mathbb{R} : \mapsto \int_0^x \Phi(t)dt$. F est \mathcal{C}^1 sur \mathbb{R} et on a $F'(0) = I_n$. Ainsi $\lim_{t\to 0} \frac{1}{t}F(t) = I_n$. Comme $GL_n(\mathbb{R})$ est ouvert, F(t) est inversible pour t petit. Soit a > 0 tel que $F(a) \in GL_n(\mathbb{R})$. il vient, en intégrant :

$$\int_0^a \Phi(x+t)dt = \Phi(x) \int_0^a \Phi(t)dt$$

d'où le résultat. Ainsi, en dérivant par rapport à t et en évaluant en t=0, on a que $\Phi'(x)=\Phi'(0)\Phi(x)$. En notant $A=\Phi'(0)$, on obtient donc :

$$\forall t \in \mathbb{R}, \ \Phi(t) = e^{tA}$$

Démonstration. L'application

$$\Phi: (\mathbb{R}, +) \longrightarrow (\mathcal{S}^1, \times) \longrightarrow (GL_n(\mathbb{R}), \times)$$

$$t \longmapsto e^{it} \longmapsto \varphi(e^{it})$$

étant de la forme $\Phi = e^{A}$, voyons que A est diagonalisable. Φ étant | On dispose donc d'une matrice $Q \in GL_n(\mathbb{C})$ telle que : 2π -périodique, on a nécessairement $e^{2\pi A} = I_N$. Il est alors classique que A est diagonalisable et que ses valeurs propres sont dans $i\mathbb{Z}$ et conjuguées.

On dispose alors d'entiers $k_1, \ldots, k_r \in \mathbb{Z}^*$ et $P \in GL_n(\mathbb{C})$ tels que $A = Pdiag(ik_1, -ik_1, \dots, ik_r, -ik_r, 0 \dots, 0)P^{-1}$. Alors on a, pour tout $t \in \mathbb{R}$:

$$e^{tA} = P \begin{pmatrix} e^{itk_1} & & & & & & & \\ & e^{-itk_1} & & & & & & \\ & & \ddots & & & & & \\ & & e^{itk_r} & & & & \\ & & & e^{-itk_r} & & & \\ & & & & 1 & & \\ & & & & \ddots & \\ & & & & 1 \end{pmatrix} P^{-1}$$

Or, pour $j \in \{1, \dots, r\}$, on a:

$$\begin{pmatrix} e^{itk_j} & 0\\ 0 & e^{-itk_j} \end{pmatrix} = \begin{pmatrix} -i & 1\\ 1 & -i \end{pmatrix} R_{tk_i} \begin{pmatrix} -i & 1\\ 1 & -i \end{pmatrix}^{-1}$$

$$e^{tA} = Q \underbrace{\begin{pmatrix} R_{tk_1} & & & & \\ & \ddots & & & \\ & & R_{tk_r} & & \\ & & & 1 & \\ & & & \ddots & \\ & & & 1 \end{pmatrix}}_{:=R} Q^{-1}$$

Donc e^{tA} est semblable à R dans $GL_n(\mathbb{C})$ donc dans $GL_n(\mathbb{R})$.

Réciproquement, l'application $\varphi:e^{it}\mapsto\Phi(t)$ est bien défini car R_{tk} ne dépend que de t modulo 2π pour $k \in \mathbb{Z}$. C'est un morphisme de groupes car $R_{(t+t')k} = R_{tk}R_{t'k}$ pour $k \in \mathbb{Z}$. La continuité est assurée car, pour $k \in \mathbb{Z}$, on a $|e^{itk} - e^{ikt'}| \leq |k| |e^{it} - e^{it'}|$, d'où les inégalités:

$$|\cos(kt) - \cos(kt')| \le |k||e^{it} - e^{it'}| |\sin(kt) - \sin(kt')| \le |k||e^{it} - e^{it'}|$$

On en déduit ainsi le résultat.

Remarques:

- On admet que si $\exp(A) = I_n$ pour $A \in \mathcal{M}_n(\mathbb{R})$, alors A est diagonalisable $Sp(A) \subset 2i\pi\mathbb{Z}$ (utiliser la décomposition de DUN-FORD de e^A).
- Le développement est long, même bien maîtrisé et en admettant le point qui précède. On pourra survoler la réciproque à l'oral de façon convaincante.